我們幫助您選擇并集成外圍系統(tǒng),確保實現(xiàn)您獨特的目標。 各種捕捉相機、位置跟蹤器、EMG(肌電圖)、測力臺、儀器式跑步機、儀器式樓梯、手傳感器、EEG腦電圖、定量腦電圖(quantitative EEG,qEEG)系統(tǒng)、數(shù)字視頻、事件標記和其他模擬設備、虛擬現(xiàn)實和觸覺設備等等。
我們進行現(xiàn)場安裝和培訓,旨在專注于您的特定應用,目標是收集有意義的數(shù)據(jù)。
人體運動源于神經(jīng)、肌肉和骨骼系統(tǒng)之間的協(xié)調(diào)互動。盡管了解運動神經(jīng)肌肉和肌肉骨骼功能的潛在機制,但目前還沒有對復合神經(jīng)肌肉骨骼系統(tǒng)中神經(jīng)機械相互作用的相關實驗理解。這是理解人類運動的主要挑戰(zhàn)。 為了解決這個問題,MotionMonitor開發(fā)了綜合多尺度建模平臺,包括肌肉、骨骼和神經(jīng)模型等等。我們使用**的高密度肌電圖 (HD-EMG) 與盲源分離相結合,將干擾 HD-EMG 信號識別到由同時控制許多肌肉纖維的脊髓運動神經(jīng)元放電的尖峰列車集合中。我們開發(fā)了由體內(nèi)運動神經(jīng)元放電驅(qū)動的多尺度肌肉骨骼建模公式,用于計算所得肌肉骨骼力的高保真估計。這將使神經(jīng)控制的肌肉組織如何與骨骼組織相互作用的分析能力qian所未有,因此將為了解神經(jīng)肌肉/骨科ji病的病因、診斷和治liao開辟新的途徑。
神經(jīng)科學和運動控制的研究受益于內(nèi)置于我們方案的各種硬件和分析。 使用任何 Tobii 頭戴式眼動追蹤系統(tǒng)來捕捉與其他數(shù)據(jù)同步的實時 3D 眼動數(shù)據(jù)。分析視線交叉點。 使用 Biosemi 或 AntNeuro 硬件捕獲 EEG 數(shù)據(jù)。適用于坐姿、站立和活躍的任務。根據(jù)其他運動學數(shù)據(jù)在 EEG 數(shù)據(jù)中創(chuàng)建用戶定義的興趣點。 實時呈現(xiàn)視覺、聽覺和觸覺提示??梢允褂煤唵蔚膸缀涡螤?、條形圖或時間序列圖或特定于應用程序的視覺效果(如紅綠燈)以多種方式呈現(xiàn)用戶定義的視覺提示。 使用 監(jiān)視器r 與 Unity 和 World Viz 的雙向通信將視覺反饋擴展到虛擬現(xiàn)實。 3D 可視化可以以多種方式呈現(xiàn)。一些例子包括: 手部實驗室:專為上肢研究設計的立體屏幕和桁架系統(tǒng)。為主體提供與屏幕上或屏幕前呈現(xiàn)的 3D 虛擬對象進行交互的能力。 沉浸式顯示器:一個完整的硬件和軟件解決方案,當手臂的可視化被隱藏或擾動時,使用同位半鏡屏幕進行研究。 綜合研究環(huán)境系統(tǒng) (IRES):與 Bertec 合作創(chuàng)建的研究質(zhì)量環(huán)境。配備帶 3D 動作捕捉系統(tǒng)和儀表跑步機的沉浸式 VR 圓頂。
運動皮質(zhì)的損傷可能會導致偏癱,失去身體對側的自主運動。偏癱通常是由中部腦大動脈大出血造成的(個體會覺得頭疼,后失去意識,醒來后發(fā)現(xiàn)某側軀體無法運動)。偏癱患者不再有基于內(nèi)部目標和期望而產(chǎn)生運動的靈活性(即不能自主運動),且肌肉被動地伸長使其比一般人有更強的反射反應,表現(xiàn)在運動中自是扭曲,即便是可以走路也與常人的姿勢相距甚遠。目前干預偏癱的技術還有待開發(fā),一種可能是,對于損傷的皮質(zhì)進行重復的TMS(經(jīng)顱磁刺激)可能激發(fā)其可塑性。
關于運動,有一種說法認為,運動計劃中存在普遍競爭,也就是說,抽象目標會產(chǎn)生多個運動計劃,運動計劃在競爭中獲得勝利才可能被執(zhí)行。為了更地完成目標,的運動計劃往往會勝出。例如,我因左耳疲勞而要摘下左耳的耳機(抽象目標),產(chǎn)生的一些列計劃有,用左手摘耳機、用右手摘耳機、朝地面甩頭讓耳機掉落……,輔助運動區(qū)(次級運動區(qū))選出搞笑的行為計劃,并讓我們執(zhí)行