為什么選擇該系統(tǒng)? -集各家之長為我所用,系統(tǒng)化的數(shù)據及分析、整合
神經科學和運動控制的研究受益于內置于我們方案的各種硬件和分析。 使用任何 Tobii 頭戴式眼動追蹤系統(tǒng)來捕捉與其他數(shù)據同步的實時 3D 眼動數(shù)據。分析視線交叉點。 使用 Biosemi 或 AntNeuro 硬件捕獲 EEG 數(shù)據。適用于坐姿、站立和活躍的任務。根據其他運動學數(shù)據在 EEG 數(shù)據中創(chuàng)建用戶定義的興趣點。 實時呈現(xiàn)視覺、聽覺和觸覺提示??梢允褂煤唵蔚膸缀涡螤?、條形圖或時間序列圖或特定于應用程序的視覺效果(如紅綠燈)以多種方式呈現(xiàn)用戶定義的視覺提示。 使用 監(jiān)視器r 與 Unity 和 World Viz 的雙向通信將視覺反饋擴展到虛擬現(xiàn)實。 3D 可視化可以以多種方式呈現(xiàn)。一些例子包括: 手部實驗室:專為上肢研究設計的立體屏幕和桁架系統(tǒng)。為主體提供與屏幕上或屏幕前呈現(xiàn)的 3D 虛擬對象進行交互的能力。 沉浸式顯示器:一個完整的硬件和軟件解決方案,當手臂的可視化被隱藏或擾動時,使用同位半鏡屏幕進行研究。 綜合研究環(huán)境系統(tǒng) (IRES):與 Bertec 合作創(chuàng)建的研究質量環(huán)境。配備帶 3D 動作捕捉系統(tǒng)和儀表跑步機的沉浸式 VR 圓頂。
運動生物力學從研究的形式上,可分為理論研究方法和實驗研究方法兩大類,實驗研究方法又分實驗室測量法和運動測量法。從研究的領域上,可分為物理學研究方法、生物學研究方法和系統(tǒng)研究方法。從研究材料的來源上可分為原始資料數(shù)據的采集整理和資料分析方法。研究運動項目主要以運動學和動力學研究方法為主,生物學的研究方法為輔,綜合運用多種實驗手段。 美國的理查德·C.尼爾森把運動生物力學的研究方法大致概括為如下五種: (1)研究特定的運動項目或其中的某一環(huán)節(jié)的生物力學,這種主要對于運動員、尤其是只對某一運動專項感興趣的教練員非常有用。(2)研究多個運動項目同包含的運動動作(如著地、起跑等動作)的生物力學。好處是建立一種一般性的理論,這個理論是建立在經典力學定律之上,或是建立在共同的神經控制模式之上。 (3)被稱為運動生物力學的評定方法,如從能耗觀點去評價運動技術的優(yōu)劣等。 (4)指對某一專項運動所涉及的生理學、運動學、動力學以及專項特點等有關方面進行綜合考慮。 (5)討論在運動中ren體器官的生物力學。 中國的周里將研究的方法分為高速攝影(二維與三維)、錄像、測力、肌電、肌力測試系統(tǒng)、同步測試、理論分析和CT、核磁共振其他方法。
上世紀七、八十年代,三維動作捕捉開始是作為生物力學研究中的攝影圖像分析工具,隨著技術的日漸成熟,該技術開始拓展到教育、訓練、運動、電腦動畫、電視、電影、視頻游戲等領域。使用者在各個關節(jié)處配備有標記點(Marker),通過標記點間位置和角度的變化來識別動作。目前,動作捕捉系統(tǒng)有機械鏈接、磁傳感器、光傳感器、聲傳感器和慣性傳感器。每種技術各有優(yōu)點,但不論何種技術,用戶都會受到某些限制。
機械式
是比較古老的跟蹤方式,使用連桿裝置組成。是價格比較便宜、度較高和響應時間短的系統(tǒng)。它可以測量物體整個身體運動,沒有延遲,而且不受聲、光、電磁波等外界干擾。另外,它能夠與力反饋裝置組合在一起。缺點是比較笨重,不靈活,而且有慣性。由于機械連接的限制,其工作空間也受到一定的限制,而且工作空間中還有一塊中心地帶是不能進入的,俗稱機械系統(tǒng)死角,使機械設備不能進入。
電磁式
使用光學感知來確定對象的實時位置和方向。基于三角測量。光學式設備主要包括感光設備(接收器)、光源(發(fā)射器)以及用于信號處理的控制器。感光設備多種多樣,例如普通攝像機、光敏二*管等。光源可以是環(huán)境光,也可以是結構光。為了防止可見光的干擾,通常采用紅外線、激光等作為光源。由于光的傳播速度很快,因此光學式設備顯著的優(yōu)點是速度快、具有較高的更新率和較低的延遲,較適合實時性強的場合,在小范圍內工作效果好,其缺點是價格昂貴。
慣性式
通過盲推得出被跟蹤物體的位置,也就是說完全通過運動系統(tǒng)內部的推算。優(yōu)點是不存在發(fā)射源、不怕遮擋、沒有外界干擾,有無限大的工作空間。缺點是快速積累誤差。